Skip Navigation

Publication Detail

Title: Salusin-β Promotes Vascular Calcification via Nicotinamide Adenine Dinucleotide Phosphate/Reactive Oxygen Species-Mediated Klotho Downregulation.

Authors: Sun, Haijian; Zhang, Feng; Xu, Yu; Sun, Shuo; Wang, Huiping; Du, Qiong; Gu, Chenxin; Black, Stephen M; Han, Ying; Tang, Haiyang

Published In Antioxid Redox Signal, (2019 12 20)

Abstract: Aims: Vascular calcification (VC) is a hallmark feature of cardiovascular disease and a significant risk factor for morbidity and mortality. Salusin-β exerts cardiovascular regulating effects in hypertension, atherosclerosis, and diabetes. The present study was designed to examine the roles of salusin-β in the progression of VC and its downstream signaling mechanisms. Results: Salusin-β expression in both the aortas of VC rats induced by vitamin D3 and nicotine and vascular smooth muscle cells (VSMCs) incubated with calcifying media was increased. Salusin-β knockdown remarkably reduced VC, whereas overexpression of salusin-β exacerbated VC both in vitro and in vivo. Overexpression of salusin-β promoted the VSMC osteochondrogenic transition, decreased Klotho protein levels, enhanced Ras-related C3 botulinum toxin substrate 1 (Rac1) activity and the translocation of p47phox to the membrane, increased the expression of nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase subunits and the production of reactive oxygen species (ROS) with or without calcifying media; however, salusin-β deficiency played the opposite roles. The calcification and downregulated Klotho protein levels induced by salusin-β were restored by ROS scavenger N-acetyl-l-cysteine, diphenyleneiodonium chloride [an inhibitor of flavin-containing enzyme, including NAD(P)H oxidase], or gene knockdown of NAD(P)H oxidase (NOX)-2, p22phox, or p47phox but were not affected by NOX-1 and NOX-4 knockdown. Klotho knockdown attenuated the protective effect of salusin-β deficiency on VSMC calcification. By contrast, exogenous Klotho ameliorated the development of VC and ROS generation induced by salusin-β overexpression. Innovation: Salusin-β is a critical modulator in VC. Conclusion: Salusin-β regulates VC through activation of NAD(P)H/ROS-mediated Klotho downregulation, suggesting that salusin-β may be a novel target for treatment of VC.

PubMed ID: 31578871 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top