Skip Navigation

Publication Detail

Title: Kinetics of Glutathione Depletion and Antioxidant Gene Expression as Indicators of Chemical Modes of Action Assessed in Vitro in Mouse Hepatocytes with Enhanced Glutathione Synthesis.

Authors: Melnikov, Fjodor; Botta, Dianne; White, Collin C; Schmuck, Stefanie C; Winfough, Matthew; Schaupp, Christopher M; Gallagher, Evan P; Brooks, Bryan W; Williams, Edward Spencer; Coish, Philip; Anastas, Paul T; Voutchkova-Kostal, Adelina; Kostal, Jakub; Kavanagh, Terrance J

Published In Chem Res Toxicol, (2019 03 18)

Abstract: Here we report a vertically integrated in vitro - in silico study that aims to elucidate the molecular initiating events involved in the induction of oxidative stress (OS) by seven diverse chemicals (cumene hydroperoxide, t-butyl hydroperoxide, hydroquinone, t-butyl hydroquinone, bisphenol A, Dinoseb, and perfluorooctanoic acid). To that end, we probe the relationship between chemical properties, cell viability, glutathione (GSH) depletion, and antioxidant gene expression. Concentration-dependent effects on cell viability were assessed by MTT assay in two Hepa-1 derived mouse liver cell lines: a control plasmid vector transfected cell line (Hepa-V), and a cell line with increased glutamate-cysteine ligase (GCL) activity and GSH content (CR17). Changes to intracellular GSH content and mRNA expression levels for the Nrf2-driven antioxidant genes Gclc, Gclm, heme oxygenase-1 ( Hmox1), and NADPH quinone oxidoreductase-1 ( Nqo1) were monitored after sublethal exposure to the chemicals. In silico models of covalent and redox reactivity were used to rationalize differences in activity of quinones and peroxides. Our findings show CR17 cells were generally more resistant to chemical toxicity and showed markedly attenuated induction of OS biomarkers; however, differences in viability effects between the two cell lines were not the same for all chemicals. The results highlight the vital role of GSH in protecting against oxidative stress-inducing chemicals as well as the importance of probing molecular initiating events in order to identify chemicals with lower potential to cause oxidative stress.

PubMed ID: 30547568 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top