Skip Navigation

Publication Detail

Title: A mineralogical and chemical investigation of road dust in Philadelphia, PA, USA.

Authors: O'Shea, Michael J; Vann, David R; Hwang, Wei-Ting; Gieré, Reto

Published In Environ Sci Pollut Res Int, (2020 May)

Abstract: Road dust was investigated within Philadelphia, a major United States city with a long history of industrial activities, in order to determine pollution levels. Almost all of the investigated minor elements were enriched relative to the continental crust. Furthermore, mean concentrations of Cr, Co, Cu, and Pb were high compared with those reported in cities in other countries. Lead pollution should be investigated further in Philadelphia, where 8 of the 30 sample sites, including those heavily trafficked by civilians, were at or above the EPA's child safety threshold for Pb in bare soil. High Spearman correlations between Zn and Cu, Zn and Cr, Cu and Cr, and Sn and V, as well as factor analysis of minor elements suggests that the primary sources of these elements were anthropogenic. Potential sources included the breakdown of alloys, non-exhaust traffic emissions, paint, smelting, and industry. We found that higher organic content in road dust may be related to higher traffic densities, which could be due to tire-wear particles. Additionally, higher mean concentrations of Fe, Cr, Cu, and Zn were found at sites with elevated traffic densities. Land use impacted some of the elements not influenced by traffic density, including Co, Sn, and Pb. Bulk mineral content was similar across different land uses and traffic densities and, thus, did not appear to be influenced by these factors. Our research emphasized the complexity of road dust and utilized a more comprehensive approach than many previous studies. This study established fundamental groundwork for future risk assessment in Philadelphia, as it identified several key pollutants in the city. Overall, this assessment serves as an informative reference point for other formerly heavily industrialized cities in the USA and abroad.

PubMed ID: 32060827 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top