Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Biosynthesis of uniformly carbon isotope-labeled docosahexaenoic acid in Crypthecodinium cohnii.

Authors: Song, Pingping; Kuryatov, Alexander; Axelsen, Paul H

Published In AMB Express, (2020 Mar 11)

Abstract: Docosahexaenoic acid (DHA) enriched in brain can yield many important degradation products after the attack of hydroxyl radicals, which is known to serve as a nutraceutical and neuroprotective effects. Oxidative stress is a commonly observed feature of Alzheimer's disease (AD). Therefore, uniformly radiolabeled DHA plays an important role in studying the oxidative fate of DHA in vivo and vitro. However, carbon isotope labeled DHA isn't commercially available now. The heterotrophic microalgae Crypthecodinium cohnii (C. cohnii) has been identified as a prolific producer of DHA. In this study, the growth rate and DHA production in C. cohnii were optimized in a new defined media, and the biosynthesis of U-13C-DHA from U-13C-glucose and U-14C-DHA from U-14C-glucose were analyzed by HPLC-MS/MS. Approximately 40 nmoles of U-13C-DHA with higher isotopic purity of 96.8% was produced in a 300 μL batch, and ~ 0.23 μCi of U-14C-DHA with significant specific activity of 5-6 Ci/mol was produced in a 300 μL batch. It was found that C. cohnii had the optimal growth and DHA accumulation at 25 °C in this defined media (C/N = 10). An efficient protocol for the biosynthesis of U-13C-DHA and U-14C-DHA were set up firstly, which provides the basic support for the analysis of oxidative degradation products of DHA in AD.

PubMed ID: 32162160 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

to Top