Skip Navigation

Publication Detail

Title: Quantification of ergosterol and 3-hydroxy fatty acids in settled house dust by gas chromatography-mass spectrometry: comparison with fungal culture and determination of endotoxin by a Limulus amebocyte lysate assay.

Authors: Saraf, A; Larsson, L; Burge, H; Milton, D

Published In Appl Environ Microbiol, (1997 Jul)

Abstract: Ergosterol and 3-hydroxy fatty acids, chemical markers for fungal biomass and the endotoxin of gram-negative bacteria, respectively, may be useful in studies of health effects of organic dusts, including domestic house dust. This paper reports a method for the combined determination of ergosterol and 3-hydroxy fatty acids in a single dust sample and a comparison of these chemical biomarkers determined by gas chromatography-mass spectrometry with results from fungal culture and Limulus assay. Analyses of replicate house dust samples resulted in correlations of 0.91 (ergosterol in six replicates; P < 0.01) and 0.94 (3-hydroxy fatty acids in nine replicates; P < 0.001). The amounts of ergosterol (range, 2 to 16.5 ng/mg of dust) correlated with those of total culturable fungi (range, 6 to 1,400 CFU/mg of dust) in 17 samples, (r = 0.65; P < 0.005). The amounts of endotoxin (range, 11 to 243 endotoxin units/mg of dust) measured with a modified chromogenic Limulus assay correlated with those of lipopolysaccharide (LPS) determined from 3-hydroxy fatty acid analysis of 15 samples. The correlation coefficient depended on the chain lengths of 3-hydroxy acids used to compute the LPS content. The correlation was high (r = 0.88 +/- 0.01; P < 0.001) when fatty acid chains of 10 to 14 carbon atoms were included; the correlation was much lower when hydroxy acids of 16- or 18-carbon chains were included. In conclusion, the results of the described extraction and analysis procedure for ergosterol and 3-hydroxy fatty acids are reproducible, and the results can be correlated with fungal culture and endotoxin activity of organic dust samples.

PubMed ID: 9212406 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top