Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Molecular role of cytochrome P4501A enzymes inoxidative stress.

Authors: Stading, Rachel; Chu, Chun; Couroucli, Xanthi; Lingappan, Krithika; Moorthy, Bhagavatula

Published In Curr Opin Toxicol, (2020 Apr-Jun)

Abstract: Cytochrome P4501A (CYP1A) enzymes play important roles in xenobiotic and endobiotic metabolism. Due to uncoupling reactions during the enzymatic cycle, CYP1A enzymes can release reactive oxidative species (ROS) in the form of superoxide radical, hydrogen peroxide, hydroxyl radical etc. An imbalance between production of free radicals and the ability of antioxidants to detoxify the free radicals can lead to accumulation of ROS, which in turn can lead to oxidative stress. Oxidative stress can lead to inflammation and toxicity, which in turn can cause human diseases such as bronchopulmonary disease (BPD), ARDS, renal hypertension, etc. CYP1A enzymes, depending on the organ system, they either contribute or protect against oxidative injury. Thus, they have dual roles in regard to oxidative stress. This review presents an overview of the mechanistic relationship between CYP1A enzymes and oxidative stress in relation to various diseases in different organs (e.g., liver, lungs, heart, kidneys, and reproductive organs).

PubMed ID: 33283080 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

to Top