Skip Navigation

Publication Detail

Title: Omega-3 fatty acid intake suppresses induction of diverse autoantibody repertoire by crystalline silica in lupus-prone mice.

Authors: Rajasinghe, Lichchavi D; Li, Quan-Zhen; Zhu, Chengsong; Yan, Mei; Chauhan, Preeti S; Wierenga, Kathryn A; Bates, Melissa A; Harkema, Jack R; Benninghoff, Abby D; Pestka, James J

Published In Autoimmunity, (2020 11)

Abstract: Inhalation of crystalline silica (cSiO2) in the workplace is etiologically linked to lupus and other autoimmune diseases. Exposing lupus-prone NZBWF1 mice to respirable cSiO2 unleashes a vicious cycle of inflammation and cell death in the lung that triggers interferon-regulated gene expression, ectopic lymphoid structure (ELS) development, elevation of local and systemic autoantibodies (AAbs), and glomerulonephritis. However, cSiO2-induced inflammation and onset of autoimmunity can be prevented by inclusion of the ω-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) into the diet of these mice. Since cSiO2 both causes cell death and interferes with efferocytosis, secondary necrosis of residual cell corpses might provide a rich and varied autoantigen (AAg) source in the lung. While it is known that the particle induces anti-nuclear and anti-dsDNA AAbs in NZBWF1 mice, the full extent of the cSiO2-induced AAb response relative to specificity and isotype is not yet understood. The purpose of this study was to test the hypotheses that cSiO2 exposure induces a wide spectrum of AAbs in the pulmonary and systemic compartments, and that dietary DHA intervention prevents these changes. Archived tissue fluid samples were obtained from a prior study in which NZBWF1 mice were fed purified isocaloric diets containing no DHA (control) or DHA corresponding calorically to human doses of 2 and 5 g/day. Mice were intranasally instilled with 1 mg cSiO2 or saline vehicle weekly for 4 weeks, then groups euthanized 1, 5, 9, or 13 weeks post-instillation (PI) of the last cSiO2 dose. Bronchoalveolar lavage fluid (BALF) and plasma from each time point were subjected to AAb profiling using a microarray containing 122 AAgs. cSiO2 triggered robust IgG and IgM AAb responses against lupus-associated AAgs, including DNA, histones, ribonucleoprotein, Smith antigen, Ro/SSA, La/SSB, and complement as early as 1 week PI in BALF and 5 weeks PI in plasma, peaking at 9 and 13 weeks PI, respectively. Importantly, cSiO2 also induced AAbs to AAgs associated with rheumatoid arthritis (collagen II, fibrinogen IV, fibrinogen S, fibronectin, and vimentin), Sjögren's syndrome (α-fodrin), systemic sclerosis (topoisomerase I), vasculitis (MPO and PR3), myositis (Mi-2, TIF1-γ, MDA5), autoimmune hepatitis (LC-1), and celiac disease (TTG). cSiO2 elicited comparable but more modest IgA AAb responses in BALF and plasma. cSiO2-induced AAb production was strongly associated with time dependent inflammatory/autoimmune gene expression, ELS development, and glomerulonephritis. AAb responses were dose-dependently suppressed by DHA supplementation and negatively correlated with the ω-3 index, an erythrocyte biomarker of ω-3 content in tissue phospholipids. Taken together, these findings suggest that cSiO2 exposure elicits a diverse multi-isotype repertoire of AAbs, many of which have been reported in individuals with lupus and other autoimmune diseases. Furthermore, induction of this broad AAb spectrum could be impeded by increasing ω-3 tissue content via dietary DHA supplementation.

PubMed ID: 32903098 Exiting the NIEHS site

MeSH Terms: Animals; Autoantibodies/immunology*; Autoantigens/immunology; Autoimmune Diseases/etiology; Autoimmunity*; Dietary Fats*; Disease Models, Animal; Fatty Acids, Omega-3/metabolism*; Immunoglobulin Isotypes/immunology; Lupus Erythematosus, Systemic/etiology; Mice; Occupational Diseases/etiology; Occupational Exposure; Silicon Dioxide/adverse effects*

Back
to Top