Skip Navigation

Publication Detail

Title: Melanoma models for the next generation of therapies.

Authors: Patton, E Elizabeth; Mueller, Kristen L; Adams, David J; Anandasabapathy, Niroshana; Aplin, Andrew E; Bertolotto, Corine; Bosenberg, Marcus; Ceol, Craig J; Burd, Christin E; Chi, Ping; Herlyn, Meenhard; Holmen, Sheri L; Karreth, Florian A; Kaufman, Charles K; Khan, Shaheen; Kobold, Sebastian; Leucci, Eleonora; Levy, Carmit; Lombard, David B; Lund, Amanda W; Marie, Kerrie L; Marine, Jean-Christophe; Marais, Richard; McMahon, Martin; Robles-Espinoza, Carla Daniela; Ronai, Ze'ev A; Samuels, Yardena; Soengas, Maria S; Villanueva, Jessie; Weeraratna, Ashani T; White, Richard M; Yeh, Iwei; Zhu, Jiyue; Zon, Leonard I; Hurlbert, Marc S; Merlino, Glenn

Published In Cancer Cell, (2021 May 10)

Abstract: There is a lack of appropriate melanoma models that can be used to evaluate the efficacy of novel therapeutic modalities. Here, we discuss the current state of the art of melanoma models including genetically engineered mouse, patient-derived xenograft, zebrafish, and ex vivo and in vitro models. We also identify five major challenges that can be addressed using such models, including metastasis and tumor dormancy, drug resistance, the melanoma immune response, and the impact of aging and environmental exposures on melanoma progression and drug resistance. Additionally, we discuss the opportunity for building models for rare subtypes of melanomas, which represent an unmet critical need. Finally, we identify key recommendations for melanoma models that may improve accuracy of preclinical testing and predict efficacy in clinical trials, to help usher in the next generation of melanoma therapies.

PubMed ID: 33545064 Exiting the NIEHS site

MeSH Terms: Animals; Disease Models, Animal*; Humans; Immunity/immunology; Immunotherapy/methods; Melanoma/drug therapy*; Melanoma/pathology; Skin Neoplasms/drug therapy*; Skin Neoplasms/pathology; Tumor Microenvironment/immunology*

Back
to Top