Skip Navigation

Publication Detail

Title: Induction of NUPR1 and AP‑1 contributes to the carcinogenic potential of nickel.

Authors: Murphy, Anthony; Roy, Nirmal; Sun, Hong; Jin, Chunyuan; Costa, Max

Published In Oncol Rep, (2021 04)

Abstract: Nickel (Ni) is carcinogenic to humans, and causes cancers of the lung, nasal cavity, and paranasal sinuses. The primary mechanisms of Ni‑mediated carcinogenesis involve the epigenetic reprogramming of cells and the ability for Ni to mimic hypoxia. However, the exact mechanisms of carcinogenesis related to Ni are obscure. Nuclear protein 1 (NUPR1) is a stress‑response gene overexpressed in cancers, and is capable of conferring chemotherapeutic resistance. Likewise, activator protein 1 (AP‑1) is highly responsive to environmental signals, and has been associated with cancer development. In this study, NUPR1 was found to be rapidly and highly induced in human bronchial epithelial (BEAS‑2B) cells exposed to Ni, and was overexpressed in Ni‑transformed BEAS‑2B cells. Similarly, AP‑1 subunits, JUN and FOS, were induced in BEAS‑2B cells following Ni exposure. Knockdown of JUN or FOS was found to significantly suppress NUPR1 induction following Ni exposure, demonstrating their importance in NUPR1 transactivation. Reactive oxygen species (ROS) are known to induce AP‑1, and Ni has been shown to produce ROS. Treatment of BEAS‑2B cells with antioxidants was unable to prevent NUPR1 induction by Ni, suggesting that NUPR1 induction by Ni relies on mechanisms other than oxidative stress. To determine how NUPR1 is transcriptionally regulated following Ni exposure, the NUPR1 promoter was cloned and inserted into a luciferase gene reporter vector. Multiple JUN binding sites reside within the NUPR1 promoter, and upon deleting a JUN binding site in the upstream most region within the NUPR1 promoter using site‑directed mutagenesis, NUPR1 promoter activity was significantly reduced. This suggests that AP‑1 transcriptionally regulates NUPR1. Moreover, knockdown of NUPR1 significantly reduced colony formation and anchorage‑independent growth in Ni‑transformed BEAS‑2B cells. Therefore, these results collectively demonstrate a novel mechanism of NUPR1 induction following Ni exposure, and provide a molecular basis by which NUPR1 may contribute to lung carcinogenesis.

PubMed ID: 33649793 Exiting the NIEHS site

MeSH Terms: Basic Helix-Loop-Helix Transcription Factors/genetics*; Carcinogenesis/chemically induced; Carcinogenesis/genetics; Carcinogens/toxicity*; Cell Line, Tumor; Gene Expression Regulation, Neoplastic/drug effects; Gene Knockdown Techniques; Humans; Lung Neoplasms/chemically induced*; Lung Neoplasms/genetics; Neoplasm Proteins/genetics*; Nickel/toxicity*; Promoter Regions, Genetic/drug effects; Transcription Factor AP-1/genetics; Transcription Factor AP-1/metabolism*; Transcriptional Activation/drug effects

to Top