Title: The Plk3-Cdc25 circuit.
Authors: Myer, David L; Bahassi, El Mustapha; Stambrook, Peter J
Published In Oncogene, (2005 Jan 10)
Abstract: Polo-like kinases (Plks) are key regulators of the cell cycle, especially in the G2 phase and mitosis. They are incorporated into signaling networks that regulate many aspects of the cell cycle, including but not limited to centrosome maturation and separation, mitotic entry, chromosome segregation, mitotic exit, and cytokinesis. The Plks have well conserved 30-amino-acid elements, designated polo boxes (PBs), located in their carboxyl-termini, which with their flanking regions constitute a functional Polo-box domain (PBD). Members of the Plk family exist in a variety of organisms including Polo in Drosophila melanogaster; Cdc5 in Saccharomyces cerevisiae; Plo1 in Schizosaccharomyces pombe; Plx1 in Xenopus laevis; and Plk1, Snk/Plk2, Fnk/Prk/Plk3, and Sak in mammals. Polo, Cdc5, and Plo1 are essential for viability. The Plks can be separated into two groups according to their functions. The first group (Polo, Cdc5, plo1, Plx1, and Plk1) primarily performs mitotic functions, whereas the second group (Plk2 and Plk3) appears to have additional functions during the G1, S, and G2 phases of the cell cycle. Several contributions to this issue will discuss different aspects of Plk involvement in cell-cycle regulation. This review, therefore, will focus on the role of Plk3 in regulating Cdc25 phosphatase function and its effect on the cell cycle.
PubMed ID: 15640846
MeSH Terms: Animals; Cell Cycle Proteins/physiology*; Humans; Mitosis/physiology; Protein-Serine-Threonine Kinases/physiology*; Xenopus Proteins/physiology; cdc25 Phosphatases/physiology*