Skip Navigation

Publication Detail

Title: Sulforaphane epigenetically demethylates the CpG sites of the miR-9-3 promoter and reactivates miR-9-3 expression in human lung cancer A549 cells.

Authors: Gao, Linbo; Cheng, David; Yang, Jie; Wu, Renyi; Li, Wenji; Kong, Ah-Ng

Published In J Nutr Biochem, (2018 06)

Abstract: Increasing evidence suggests that epigenetic aberrations contribute to the development and progression of cancers such as lung cancer. The promoter region of miR-9-3 was recently found to be hypermethylated in lung cancer, resulting in down-regulation of miR-9-3 and poor patient prognosis. Sulforaphane (SFN), a natural compound that is obtained from cruciferous vegetables, has potent anticancer activities. In this study, we aimed to investigate the effect of SFN on restoring the miR-9-3 level in lung cancer A549 cells through epigenetic regulation. DNA methylation of the miR-9-3 promoter was examined using bisulfite genomic sequencing and methylated DNA immunoprecipitation analysis. The expression levels of miR-9-3 and several epigenetic modifying enzymes were measured using quantitative real-time polymerase chain reaction and Western blotting, respectively. The transcriptional activity of the miR-9-3 promoter was evaluated by patch methylation, and histone modifications were analyzed using chromatin immunoprecipitation (ChIP) assays. We found that CpG methylation was reduced in the miR-9-3 promoter and that miR-9-3 expression was increased after 5 days of treatment with SFN. In vitro methylation analysis showed that the methylated recombinant construct exhibited lower luciferase reporter activity than the unmethylated counterpart. ChIP assays revealed that SFN treatment increased H3K4me1 enrichment at the miR-9-3 promoter. Furthermore, SFN treatment attenuated enzymatic DNMT activity and DNMT3a, HDAC1, HDAC3, HDAC6 and CDH1 protein expression. Taken together, these findings indicate that SFN may exert its chemopreventive effects partly through epigenetic demethylation and restoration of miR-9-3.

PubMed ID: 29525530 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top