Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Polystyrene microplastics induce an immunometabolic active state in macrophages.

Authors: Merkley, Seth D; Moss, Harrison C; Goodfellow, Samuel M; Ling, Christina L; Meyer-Hagen, Jewel L; Weaver, John; Campen, Matthew J; Castillo, Eliseo F

Published In Cell Biol Toxicol, (2022 Feb)

Abstract: Anti-inflammatory and proinflammatory responses in macrophages are influenced by cellular metabolism. Macrophages are the primary phagocyte in mucosal environments (i.e., intestinal tract and lungs) acting as first-line defense against microorganisms and environmental pollutants. Given the extensive contamination of our food and water sources with microplastics, we aimed to examine the metabolic response in macrophages to microplastic particles (MPs). Utilizing murine macrophages, we assessed the metabolic response of macrophages after polystyrene MP phagocytosis. The phagocytosis of MP by macrophages induced a metabolic shift toward glycolysis and a reduction in mitochondrial respiration that was associated with an increase of cell surface markers CD80 and CD86 and cytokine gene expression associated with glycolysis. The gastrointestinal consequences of this metabolic switch in the context of an immune response remain uncertain, but the global rise of plastic pollution and MP ingestion potentially poses an unappreciated health risk. Macrophage phagocytosis of microplastics alters cellular metabolism. - Macrophages cannot degrade PS MP. - MP phagocytosis increases glycolysis in murine macrophages. - MP phagocytosis reduces mitochondrial respiration in murine macrophages.

PubMed ID: 34021430 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

to Top