Skip Navigation

Publication Detail

Title: Comparison of techniques to reduce residential lead dust on carpet and upholstery: the new jersey assessment of cleaning techniques trial.

Authors: Yiin, Lih-Ming; Rhoads, George G; Rich, David Q; Zhang, Junfeng; Bai, Zhipeng; Adgate, John L; Ashley, Peter J; Lioy, Paul J

Published In Environ Health Perspect, (2002 Dec)

Abstract: High-efficiency particulate air (HEPA) filtered vacuum cleaners are recommended by the U.S. Department of Housing and Urban Development for cleaning lead-contaminated house dust. We performed a randomized field study to determine whether a conventional (non-HEPA) vacuum cleaner could achieve cleaning results comparable with those of a HEPA vacuum cleaner. We compared the lead loading reductions of these two vacuum cleaners in a total of 127 New Jersey homes of lead-exposed children. We used wet towelettes and a vacuum sampler to collect lead dust from carpets and upholstery before and after vacuum cleaning. The vacuum sampling data showed that the HEPA and non-HEPA vacuum cleaners resulted in 54.7% (p = 0.006) and 36.4% (p = 0.020) reductions in lead loading, respectively, when used on soiled carpets, although the overall difference in lead loading reduction between the two vacuum cleaners was not statistically significant (p = 0.293). The wipe sampling data did not show any significant lead loading reduction for either of the vacuum cleaners, suggesting that both vacuum cleaners fail to clean the surfaces of carpet effectively, considering that wipe sampling media simulate surface contact. On upholstery, the wipe sampling data showed a significant reduction in lead loading for the non-HEPA vacuum cleaner (22.2%, p = 0.047). Even with the significant reduction, the postcleaning lead loadings on upholstery were similar to those on carpets. The similar lead loading results for carpets and upholstery indicate that soiled upholstery may be as important a source of childhood lead exposure as carpets.

PubMed ID: 12460803 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top