Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Ascorbate: antioxidant and biochemical activities and their importance for in vitro models.

Authors: Zhitkovich, Anatoly

Published In Arch Toxicol, (2021 Dec)

Abstract: Ascorbate has many biological activities that involve fundamental cellular functions such as gene expression, differentiation, and redox homeostasis. Biochemically, it serves as a cofactor for a large family of dioxygenases (> 60 members) which control transcription, formation of extracellular matrix, and epigenetic processes of histone and DNA demethylation. Ascorbate is also a major antioxidant acting as a very effective scavenger of primary reactive oxygen species. Reduction of Fe(III) by ascorbate is important for cellular uptake of iron via DMT1. Cell culture models are extensively used in toxicology and pharmacology for mechanistic studies of nutrients, drugs and other xenobiotics. High-throughput screens in vitro, such as a large-scale Tox21 program in the US, offers opportunities to assess hazardous properties of a vast and growing number of industrial chemicals. However, cells in typical cultures are severely deficient in ascorbate, raising concerns about their ability to accurately recapitulate toxic and other responses in vivo. Scarcity of ascorbate and a frequently unrecognized use of media with its thiol substitute alters stress sensitivity of cells in different directions. Remediation of ascorbate deficiency in tissue culture restores the physiological state of many cellular processes and it should improve a currently limited toxicity predictability of in vitro bioassays.

PubMed ID: 34596731 Exiting the NIEHS site

MeSH Terms: Animals; Antioxidants/metabolism; Antioxidants/pharmacology*; Ascorbic Acid Deficiency/physiopathology*; Ascorbic Acid/metabolism; Ascorbic Acid/pharmacology*; Cells, Cultured; High-Throughput Screening Assays/methods; Humans; In Vitro Techniques; Toxicity Tests/methods

to Top