Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: ATF3 Modulates the Resistance of Breast Cancer Cells to Tamoxifen through an N6-Methyladenosine-Based Epitranscriptomic Mechanism.

Authors: Liu, Xiaochuan; Yuan, Jun; Zhang, Xudong; Li, Lin; Dai, Xiaoxia; Chen, Qi; Wang, Yinsheng

Published In Chem Res Toxicol, (2021 Jul 19)

Abstract: Tamoxifen has been used for years for treating estrogen receptor-positive breast cancer; drug resistance, however, constitutes one of the main challenges for this therapy. We found that the protein expression level of ATF3 is significantly higher in tamoxifen-resistant (TamR) MCF-7 cells than the corresponding parental cancer cells. In addition, ATF3 protein expression is positively correlated with the resistance of TamR MCF-7 cells to 4-hydroxytamoxifen (4-OHT). Mechanistically, elevated ATF3 protein expression in TamR MCF-7 cells results from a lower level of expression of YTHDF2, an m6A reader protein, and the ensuing stabilization and increased translational efficiency of ATF3 mRNA. Additionally, TamR MCF-7 cells exhibited decreased methylation at A131, a consensus motif site for m6A, in the 5'-untranslated region (5'-UTR) of ATF3 mRNA. Moreover, augmented ATF3 stimulates the expression of ABCB1, an efflux pump that confers drug resistance in breast cancer cells, and ATF3 itself is also positively regulated by adenylate kinase 4. Together, our results uncovered a novel molecular target for m6A modification (i.e., ATF3 mRNA) and the epitranscriptomic regulator for this target (i.e., YTHDF2). We also illustrated the role of ATF3 in drug resistance, revealed its downstream target (i.e., ABCB1), and suggested ATF3 as a candidate therapeutic target for overcoming drug resistance in cancer cells.

PubMed ID: 34213887 Exiting the NIEHS site

MeSH Terms: Activating Transcription Factor 3/genetics*; Adenosine/analogs & derivatives; Adenosine/genetics; Antineoplastic Agents, Hormonal/pharmacology*; Breast Neoplasms/drug therapy; Breast Neoplasms/genetics*; Drug Resistance, Neoplasm; Epigenesis, Genetic/drug effects; Female; Gene Expression Regulation, Neoplastic/drug effects; Humans; MCF-7 Cells; RNA, Messenger/genetics; Tamoxifen/pharmacology*

to Top