Skip Navigation

Publication Detail

Title: Two Typical Glycosylated Metabolites of Tetrabromobisphenol A Formed in Plants: Excretion and Deglycosylation in Plant Root Zones.

Authors: Hou, Xingwang; Wei, Linfeng; Tang, Yinyin; Kong, Wenqian; Liu, Jiyan; Schnoor, Jerald L; Jiang, Guibin

Published In Environ Sci Technol Lett, (2021 Apr 13)

Abstract: The glycosylation process was investigated for the common brominated flame retardant tetrabromobisphenol A (TBBPA) in hydroponic exposure systems with pumpkin seedlings. Two typical glycosylation metabolites of TBBPA formed in pumpkin seedlings, TBBPA mono-β-d-glucopyranoside (TBBPA MG) and TBBPA di-β-d-glucopyranoside (TBBPA DG), increasing their mass early in the exposure (reaching maximum masses of 608 ± 53 and 3806 ± 1570 pmol at 12 h, respectively) and then falling throughout exposure. These two metabolites were released from roots to rhizosphere solutions, where they also exhibited initial increases followed by decreasing trends (reaching maximum masses of 595 ± 272 pmol at 3 h and 77.1 ± 36.0 pmol at 6 h, respectively). However, a (pseudo)zero-order deglycosylation of TBBPA MG and TBBPA DG (during the first 1.5 h) back to TBBPA was unexpectedly detected in the hydroponic solutions containing pumpkin exudates and microorganisms. The function of microorganisms in the solutions was further investigated, revealing that the microorganisms were main contributors to deglycosylation. Plant detoxification through glycosylation and excretion, followed by deglycosylation of metabolites back to the toxic parent compound (TBBPA) in hydroponic solutions, provides new insight into the uptake, transformation, and environmental fate of TBBPA and its glycosylated metabolites in plant/microbial systems.

PubMed ID: 34805424 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top