Skip Navigation

Publication Detail

Title: Comparison of Levels of Three Tobacco Smoke Exposure Biomarkers in Children of Smokers.

Authors: Mahabee-Gittens, E Melinda; Matt, Georg E; Ding, Lili; Merianos, Ashley L

Published In Int J Environ Res Public Health, (2021 Nov 10)

Abstract: Objectives: Cotinine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), and N-oxides are biomarkers of tobacco smoke exposure (TSE) used to assess short- and longer-term TSE. The objective of this study was to assess the associations between these TSE biomarkers, sociodemographics, parental smoking, and child TSE patterns among 0-17-year-olds. Methods: A convenience sample of 179 pediatric patients (mean (SD) age = 7.9 (4.3) years) who lived with ≥1 smoker and who had parental assessments completed and urine samples analyzed for the three TSE biomarkers of interest were included. Biomarker levels were log-transformed, univariate regression models were built and Pearson correlations were assessed. Results: In total, 100% of children had detectable levels of cotinine and >96% had detectable NNAL and N-oxide levels. The geometric means of cotinine, NNAL, and N-oxide levels were 10.1 ng/mL, 25.3 pg/mL, and 22.9 pg/mL, respectively. The mean (SD) number of daily cigarettes smoked by parents was 10.6 (6.0) cigarettes. Child age negatively correlated with urinary cotinine (r = -0.202, p = 0.007) and log NNAL levels (r = -0.275, p < 0.001). The highest log-cotinine levels were in children who were younger, of African American race, and whose parents had a lower education, an annual income ≤USD15,000, and no smoking bans. The highest log-NNAL and N-oxide levels were in children whose parents had a lower education, had no smoking bans, and were around higher numbers of cigarettes. Conclusion: Children of smokers who were younger, African American, and had no smoking bans had the highest TSE biomarker levels. Targeted interventions are needed to reduce TSE levels among high-risk children.

PubMed ID: 34831559 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top