Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Quantitative subcellular acyl-CoA analysis reveals distinct nuclear metabolism and isoleucine-dependent histone propionylation.

Authors: Trefely, Sophie; Huber, Katharina; Liu, Joyce; Noji, Michael; Stransky, Stephanie; Singh, Jay; Doan, Mary T; Lovell, Claudia D; von Krusenstiern, Eliana; Jiang, Helen; Bostwick, Anna; Pepper, Hannah L; Izzo, Luke; Zhao, Steven; Xu, Jimmy P; Bedi Jr, Kenneth C; Rame, J Eduardo; Bogner-Strauss, Juliane G; Mesaros, Clementina; Sidoli, Simone; Wellen, Kathryn E; Snyder, Nathaniel W

Published In Mol Cell, (2022 Jan 20)

Abstract: Quantitative subcellular metabolomic measurements can explain the roles of metabolites in cellular processes but are subject to multiple confounding factors. We developed stable isotope labeling of essential nutrients in cell culture-subcellular fractionation (SILEC-SF), which uses isotope-labeled internal standard controls that are present throughout fractionation and processing to quantify acyl-coenzyme A (acyl-CoA) thioesters in subcellular compartments by liquid chromatography-mass spectrometry. We tested SILEC-SF in a range of sample types and examined the compartmentalized responses to oxygen tension, cellular differentiation, and nutrient availability. Application of SILEC-SF to the challenging analysis of the nuclear compartment revealed a nuclear acyl-CoA profile distinct from that of the cytosol, with notable nuclear enrichment of propionyl-CoA. Using isotope tracing, we identified the branched chain amino acid isoleucine as a major metabolic source of nuclear propionyl-CoA and histone propionylation, thus revealing a new mechanism of crosstalk between metabolism and the epigenome.

PubMed ID: 34856123 Exiting the NIEHS site

MeSH Terms: Acyl Coenzyme A/metabolism*; Animals; Cell Compartmentation*; Cell Differentiation; Cell Nucleus/metabolism*; Chromatography, Liquid; Cytosol/metabolism; Energy Metabolism*; Epigenesis, Genetic; Hep G2 Cells; Histones/metabolism*; Humans; Isoleucine; Metabolome; Metabolomics*; Mice; Mitochondria/metabolism; Oxygen/metabolism; Protein Processing, Post-Translational*; Spectrometry, Mass, Electrospray Ionization

to Top