Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Structural Dynamics of Cytochrome P450 3A4 in the Presence of Substrates and Cytochrome P450 Reductase.

Authors: Ducharme, Julie; Sevrioukova, Irina F; Thibodeaux, Christopher J; Auclair, Karine

Published In Biochemistry, (2021 07 20)

Abstract: Cytochrome P450 3A4 (CYP3A4) is the most important drug-metabolizing enzyme in humans and has been associated with harmful drug interactions. The activity of CYP3A4 is known to be modulated by several compounds and by the electron transfer partner, cytochrome P450 reductase (CPR). The underlying mechanism of these effects, however, is poorly understood. We have used hydrogen-deuterium exchange mass spectrometry to investigate the impact of binding of CPR and of three different substrates (7-benzyloxy-4-trifluoromethyl-coumarin, testosterone, and progesterone) on the conformational dynamics of CYP3A4. Here, we report that interaction of CYP3A4 with substrates or with the oxidized or reduced forms of CPR leads to a global rigidification of the CYP3A4 structure. This was evident from the suppression of deuterium exchange in several regions of CYP3A4, including regions known to be involved in protein-protein interactions (helix C) and substrate binding and specificity (helices B' and E, and loop K/β1). Furthermore, the bimodal isotopic distributions observed for some CYP3A4-derived peptides were drastically impacted upon binding to CPR and/or substrates, suggesting the existence of stable CYP3A4 conformational populations that are perturbed by ligand/CPR binding. The results have implications for understanding the mechanisms of ligand binding, allostery, and catalysis in CYP enzymes.

PubMed ID: 34196520 Exiting the NIEHS site

MeSH Terms: Animals; Cytochrome P-450 CYP3A/chemistry; Cytochrome P-450 CYP3A/metabolism*; Humans; Models, Molecular; NADPH-Ferrihemoprotein Reductase/chemistry; NADPH-Ferrihemoprotein Reductase/metabolism*; Protein Binding; Protein Conformation; Protein Interaction Maps; Rats; Substrate Specificity

Back
to Top