Skip Navigation

Publication Detail

Title: Endogenous S-nitrosocysteine proteomic inventories identify a core of proteins in heart metabolic pathways.

Authors: Lau, Benjamin; Fazelinia, Hossein; Mohanty, Ipsita; Raimo, Serena; Tenopoulou, Margarita; Doulias, Paschalis-Thomas; Ischiropoulos, Harry

Published In Redox Biol, (2021 11)

Abstract: Protein cysteine residues are essential for protein folding, participate in enzymatic catalysis, and coordinate the binding of metal ions to proteins. Enzymatically catalyzed and redox-dependent post-translational modifications of cysteine residues are also critical for signal transduction and regulation of protein function and localization. S-nitrosylation, the addition of a nitric oxide equivalent to a cysteine residue, is a redox-dependent modification. In this study, we curated and analyzed four different studies that employed various chemoselective platforms coupled to mass spectrometry to precisely identify S-nitrosocysteine residues in mouse heart proteins. Collectively 1974 S-nitrosocysteine residues in 761 proteins were identified and 33.4% were identified in two or more studies. A core of 75 S-nitrosocysteine residues in 44 proteins were identified in all four studies. Bioinformatic analysis of each study indicated a significant enrichment of mitochondrial proteins participating in metabolism. Regulatory proteins in glycolysis, TCA cycle, oxidative phosphorylation and ATP production, long chain fatty acid β-oxidation, and ketone and amino acid metabolism constitute the major functional pathways impacted by protein S-nitrosylation. In the cardiovascular system, nitric oxide signaling regulates vasodilation and cardiac muscle contractility. The meta-analysis of the proteomic data supports the hypothesis that nitric oxide signaling via protein S-nitrosylation is also a regulator of cardiomyocyte metabolism that coordinates fuel utilization to maximize ATP production. As such, protein cysteine S-nitrosylation represents a third functional dimension of nitric oxide signaling in the cardiovascular system to ensure optimal cardiac function.

PubMed ID: 34610554 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

to Top