Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: MYC, mitochondrial metabolism and O-GlcNAcylation converge to modulate the activity and subcellular localization of DNA and RNA demethylases.

Authors: Lin, An-Ping; Qiu, Zhijun; Ethiraj, Purushoth; Sasi, Binu; Jaafar, Carine; Rakheja, Dinesh; Aguiar, Ricardo C T

Published In Leukemia, (2022 04)

Abstract: Mitochondria can function as signaling organelles, and part of this output leads to epigenetic remodeling. The full extent of this far-reaching interplay remains undefined. Here, we show that MYC transcriptionally activates IDH2 and increases alpha-ketoglutarate (αKG) levels. This regulatory step induces the activity of αKG-dependent DNA hydroxylases and RNA demethylases, thus reducing global DNA and RNA methylation. MYC, in a IDH2-dependent manner, also promotes the nuclear accumulation of TET1-TET2-TET3, FTO and ALKBH5. Notably, this subcellular movement correlated with the ability of MYC, in an IDH2-dependent manner, and, unexpectedly, of αKG to directly induce O-GlcNAcylation. Concordantly, modulation of the activity of OGT and OGA, enzymes that control the cycling of this non-canonical mono-glycosylation, largely recapitulated the effects of the MYC-IDH2-αKG axis on the subcellular movement of DNA and RNA demethylases. Together, we uncovered a hitherto unsuspected crosstalk between MYC, αKG and O-GlcNAcylation which could influence the epigenome and epitranscriptome homeostasis.

PubMed ID: 34997181 Exiting the NIEHS site

MeSH Terms: Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics; Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism; DNA Methylation*; DNA-Binding Proteins/metabolism; DNA/metabolism; Humans; Mitochondria/metabolism; Mixed Function Oxygenases/genetics; Mixed Function Oxygenases/metabolism; Proto-Oncogene Proteins/metabolism; RNA*

Back
to Top