Skip Navigation

Publication Detail

Title: Induction of growth arrest and DNA damage-inducible genes Gadd45 and Gadd153 in primary rodent embryonic cells following exposure to methylmercury.

Authors: Ou, Y C; Thompson, S A; Kirchner, S C; Kavanagh, T J; Faustman, E M

Published In Toxicol Appl Pharmacol, (1997 Nov)

Abstract: Methylmercury (MeHg) is recognized as a significant environmental hazard, particularly to the development of the nervous system. Studies on the mechanism of MeHg-induced toxicity reveal that inhibition of cell cycle progression may be one way by which MeHg interferes with normal development. In this study, we utilized primary rodent embryonic neuronal cell (CNS) and limb bud (LB) cultures to determine the mRNA expression level of two genes involved in cell cycle arrest, Gadd45 and Gadd153, both during cellular differentiation and in response to MeHg exposure. A differential expression pattern of Gadd45 and Gadd153 was observed during CNS and LB differentiation in culture. However, both CNS and LB cells responded to MeHg exposure with a concentration-dependent increase in Gadd45 and Gadd153 mRNA. Previous studies have shown that MeHg exposure (2 microm) of CNS cells for 24 hr causes a fourfold decrease in the number of cells passing through the cell cycle. The present study shows that at the same exposure concentration, a five- to eightfold increase in Gadd45 mRNA levels and a two- to fourfold increase of Gadd153 was observed. Induction of Gadd45 was also noted in adult female mice chronically exposed to 10 ppm MeHg, a dose that caused developmental toxicity in vivo. Based on the known involvement of the Gadd genes in cell cycle arrest, activation of these genes could be one mechanism by which MeHg interferes with the cell cycle in adult and developing organisms.

PubMed ID: 9356304 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top