Skip Navigation

Publication Detail

Title: Advancing the Toxics Mobility Inventory: Development and Application of a Toxics Mobility Vulnerability Index to Harris County, Texas.

Authors: Malecha, Matthew L; Kirsch, Katie R; Karaye, Ibraheem; Horney, Jennifer A; Newman, Galen

Published In Sustainability (New Rochelle), (2020 Dec 01)

Abstract: Harris County, Texas, is home to thousands of documented sources of environmental pollution. It is also highly vulnerable to impacts from natural hazards, including floods. Building on the Toxics Mobility Inventory (TMI), this article discusses how the authors developed a Toxics Mobility Vulnerability Index (TMVI) and applied it to Harris County to assess potential exposure risks to residents from the transfer of toxic materials during flood events. The TMI concept was operationalized and standardized by combining multiple spatial data sets to simultaneously evaluate various factors in the weather hazards-extant toxics-social vulnerability nexus (e.g., floodplain area, industrial land use, social vulnerability measures). Findings indicated hot spots of vulnerability to hazard-induced toxics transfer concentrated in Northeast Houston US Census tracts in Harris County. The main drivers of increased risk in these areas include the proportion of the area that is impervious surface, consistently high social vulnerabilities, and poor health. However, the most vulnerable areas also have overlapping exposure to both industrial land use and floodplains. Assessing the contribution of a set of industrial land use, social vulnerability, natural hazard, emergency response, and topography variables in a single index on the same spatial scale (e.g., US Census tract) provides detailed information for policy makers tasked with mitigating risk. Applying tools such as the TMVI to highly vulnerable urban and coastal locations may help identify changes needed for preparedness and mitigation planning and highlight areas where limited resources for investment- and policy-related remediation should be focused, both before and after disasters.

PubMed ID: 33868548 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top