Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Relative Telomere Length Change in Colorectal Carcinoma and Its Association with Tumor Characteristics, Gene Expression and Microsatellite Instability.

Authors: Kibriya, Muhammad G; Raza, Maruf; Kamal, Mohammed; Haq, Zahidul; Paul, Rupash; Mareczko, Andrew; Pierce, Brandon L; Ahsan, Habibul; Jasmine, Farzana

Published In Cancers (Basel), (2022 Apr 30)

Abstract: We compared tumor and adjacent normal tissue samples from 165 colorectal carcinoma (CRC) patients to study change in relative telomere length (RTL) and its association with different histological and molecular features. To measure RTL, we used a Luminex-based assay. We observed shorter RTL in the CRC tissue compared to paired normal tissue (RTL 0.722 ± SD 0.277 vs. 0.809 ± SD 0.242, p = 0.00012). This magnitude of RTL shortening (by ~0.08) in tumor tissue is equivalent to RTL shortening seen in human leukocytes over 10 years of aging measured by the same assay. RTL was shorter in cancer tissue, irrespective of age group, gender, tumor pathology, location and microsatellite instability (MSI) status. RTL shortening was more prominent in low-grade CRC and in the presence of microsatellite instability (MSI). In a subset of patients, we also examined differential gene expression of (a) telomere-related genes, (b) genes in selected cancer-related pathways and (c) genes at the genome-wide level in CRC tissues to determine the association between gene expression and RTL changes. RTL shortening in CRC was associated with (a) upregulation of DNA replication genes, cyclin dependent-kinase genes (anti-tumor suppressor) and (b) downregulation of "caspase executor", reducing apoptosis.

PubMed ID: 35565379 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

to Top