Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: A review of recent studies on toxicity, sequestration, and degradation of per- and polyfluoroalkyl substances (PFAS).

Authors: Dickman, Rebecca A; Aga, Diana S

Published In J Hazard Mater, (2022 Aug 15)

Abstract: The fate, effects, and treatment of per- and polyfluoroalkyl substances (PFAS), an anthropogenic class of chemicals used in industrial and commercial production, are topics of great interest in recent research and news cycles. This interest stems from the ubiquity of PFAS in the global environment as well as their significant toxicological effects in humans and wildlife. Research on toxicity, sequestration, removal, and degradation of PFAS has grown rapidly, leading to a flood of valuable knowledge that can get swamped out in the perpetual rise in the number of publications. Selected papers from the Journal of Hazardous Materials between January 2018 and May 2022 on the toxicity, sequestration, and degradation of PFAS are reviewed in this article and made available as open-access publications for one year, in order to facilitate the distribution of critical knowledge surrounding PFAS. This review discusses routes of toxicity as observed in mammalian and cellular models, and the observed human health effects in exposed communities. Studies that evaluate of toxicity through in-silico approaches are highlighted in this paper. Removal of PFAS through modified carbon sorbents, nanoparticles, and anion exchange materials are discussed while comparing treatment efficiencies for different classes of PFAS. Finally, various biotic and abiotic degradation techniques, and the pathways and mechanisms involved are reviewed to provide a better understanding on the removal efficiencies and cost effectiveness of existing treatment strategies.

PubMed ID: 35643010 Exiting the NIEHS site

MeSH Terms: Fluorocarbons*/chemistry; Fluorocarbons*/toxicity; Hazardous Substances; Humans

to Top