Skip Navigation

Publication Detail

Title: Differential hepatotoxicity induced by cadmium in Fischer 344 and Sprague-Dawley rats.

Authors: Kuester, Robert K; Waalkes, Michael P; Goering, Peter L; Fisher, Ben L; McCuskey, Robert S; Sipes, I Glenn

Published In Toxicol Sci, (2002 Jan)

Abstract: A number of reports document that Fischer 344 (F344) rats are more susceptible to chemically induced liver injury than Sprague-Dawley (SD) rats. Cadmium (CdCl2), a hepatotoxicant that does not require bioactivation, was used to better define the biological events that are responsible for the differences in liver injury between F344 and SD rats. CdCl2 (3 mg/kg) produced hepatotoxicity in both rat strains, but the hepatic injury was 18-fold greater in F344 rats as assessed by plasma alanine aminotransferase (ALT) activity. This difference in toxicity was not observed when isolated hepatocytes were incubated with CdCl2 in vitro, indicating that other cell types contribute to Cd-induced hepatotoxicity in vivo. Indeed, the sieve plates of hepatic endothelial cells (EC) in F344 rats were damaged to a greater degree than EC in SD rats. Additionally, Kupffer cell (KC) inhibition reduced hepatotoxicity in both strains, suggesting that this cell type is involved in the progression of CdCl2-induced hepatotoxicity. Moreover, enhanced synthesis of heat shock protein 72 occurred earlier in the SD rat. Maximal levels of hepatic metallothionein (MT), a protein associated with cadmium tolerance, were greater in SD rats. These protective factors may limit CdCl2-induced hepatocellular injury in SD compared with F344 rats by reducing KC activation and the subsequent inflammatory response that allows for the progression of hepatic injury.

PubMed ID: 11752694 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top