Skip Navigation

Publication Detail

Title: Health effects of a mixture of indoor air volatile organics, their ozone oxidation products, and stress.

Authors: Fiedler, Nancy; Laumbach, Robert; Kelly-McNeil, Kathie; Lioy, Paul; Fan, Zhi-Hua; Zhang, Junfeng; Ottenweller, John; Ohman-Strickland, Pamela; Kipen, Howard

Published In Environ Health Perspect, (2005 Nov)

Abstract: In our present study we tested the health effects among women of controlled exposures to volatile organic compounds (VOCs), with and without ozone (O3), and psychological stress. Each subject was exposed to the following three conditions at 1-week intervals (within-subject factor): VOCs (26 mg/m3), VOCs + O3 (26 mg/m3 + 40 ppb), and ambient air with a 1-min spike of VOCs (2.5 mg/m3). As a between-subjects factor, half the subjects were randomly assigned to perform a stressor. Subjects were 130 healthy women (mean age, 27.2 years; mean education, 15.2 years). Health effects measured before, during, and after each 140-min exposure included symptoms, neurobehavioral performance, salivary cortisol, and lung function. Mixing VOCs with O3 was shown to produce irritating compounds including aldehydes, hydrogen peroxide, organic acids, secondary organic aerosols, and ultrafine particles (particulate matter with aerodynamic diameter < 0.1 microm). Exposure to VOCs with and without O3 did not result in significant subjective or objective health effects. Psychological stress significantly increased salivary cortisol and symptoms of anxiety regardless of exposure condition. Neither lung function nor neurobehavioral performance was compromised by exposure to VOCs or VOCs + O3. Although numerous epidemiologic studies suggest that symptoms are significantly increased among workers in buildings with poor ventilation and mixtures of VOCs, our acute exposure study was not consistent with these epidemiologic findings. Stress appears to be a more significant factor than chemical exposures in affecting some of the health end points measured in our present study.

PubMed ID: 16263509 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top