Skip Navigation

Publication Detail

Title: Increased bystander mutagenic effect in DNA double-strand break repair-deficient mammalian cells.

Authors: Nagasawa, H; Huo, L; Little, J B

Published In Int J Radiat Biol, (2003 Jan)

Abstract: We have shown previously that when monolayer cultures of Chinese hamster ovary (CHO) cells are exposed to very low fluences of alpha-particles, HPRT mutations are induced in non-irradiated 'bystander' cells in the population. The present investigation was designed to examine the role of DNA repair in this process.The DNA double-strand repair-deficient mutant cell line xrs-5 was exposed to mean doses of alpha-particles as low as 0.04 cGy whereby less than 1% of the nuclei were traversed by an alpha track and thus received any radiation exposure.With this very low alpha-particle fluence, most of the cells in the xrs-5 population appeared to be at risk for the induction of mutations, indicating a much larger bystander effect than observed with wild-type CHO cells. Molecular structural analyses showed that xrs-5 mutants primarily involved partial and total gene deletions as opposed to wild-type cells where point mutations predominated in bystander cells.These results indicate a very large bystander effect in xrs-5 cells. They support the hypothesis that unrepaired or misrepaired double-strand breaks (DSB), arising from opposed DNA lesions, enhance the sensitivity of bystander cells in xrs-5 cultures to the induction of mutations.

PubMed ID: 12556329 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top