Skip Navigation

Publication Detail

Title: Loss of normal G1 checkpoint control is an early step in carcinogenesis, independent of p53 status.

Authors: Syljuasen, R G; Krolewski, B; Little, J B

Published In Cancer Res, (1999 Mar 1)

Abstract: Recent studies have described a diminished radiation-induced G1 arrest in some wild-type (wt) p53 human tumor cell lines compared to normal human fibroblasts. However, the significance of this finding was unclear, particularly because tumor cell lines may have accumulated additional genetic changes after long periods in culture. Because malignant transformation of individual cells is thought to be an early step in carcinogenesis, we have used a model system of normal and transformed mouse fibroblast 10T1/2 cell clones to examine whether loss of G1 checkpoint control may be an early event in tumor development and to study the relationships between G1 arrest, radiosensitivity, and genetic alterations. Twelve transformed clones were established from type III foci induced by irradiation of normal 10T1/2 cells and were compared with six clones derived from wt 10T1/2 cells. Three of the transformed clones expressed mutant p53; two of these had the same point mutation at codon 132 (exon 5), and one had a point mutation at codon 135. The remaining transformed and normal clones had wt p53 status. The radiosensitivity of transformed clones, as measured by a clonogenic assay, was similar to that of normal clones; the three clones with mutant p53 did not differ from the others. There was no relationship between G1 arrest and radiosensitivity. Normal 10T1/2 cell clones showed a transient G1 arrest lasting approximately 9 h after 6 Gy of irradiation. This G1 arrest was either absent or markedly reduced in all of the transformed clones, regardless of p53 status. These results suggest that diminished G1 checkpoint control is an early event in the process of carcinogenesis that is associated with the malignant transformation of individual cells and is independent of p53 status.

PubMed ID: 10070956 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top