Skip Navigation

Publication Detail

Title: Characterization of lipopolysaccharides present in settled house dust.

Authors: Park, Ju-Hyeong; Szponar, Bogumila; Larsson, Lennart; Gold, Diane R; Milton, Donald K

Published In Appl Environ Microbiol, (2004 Jan)

Abstract: The 3-hydroxy fatty acids (3-OHFAs) in lipopolysaccharides (LPS) play an important role in determining endotoxin activity, and childhood exposure to endotoxin has recently been associated with reduced risk of atopic diseases. To characterize the 3-OHFAs in house dust (HD), we used gas chromatography-mass spectrometry to assay 190 HD samples. Dust from beds, bedroom floors, family rooms, and kitchen floors was collected as part of a birth cohort study of childhood asthma (study 1) and a longitudinal study of home allergen and endotoxin (study 2). We also measured endotoxin activity with a Limulus assay and computed specific activity (endotoxin activity per nanomole of LPS). Longer-chain (C(16:0) and C(18:0)) 3-OHFAs were predominant in HD compared with short-chain (C(10:0), C(12:0), and C(14:0)) acids. Endotoxin activity was positively correlated with short-chain 3-OHFAs in both studies. In study 2, 3-OH C(16:0) was negatively correlated and 3-OH C(18:0) was not correlated with endotoxin activity, consistent with previous findings that the Limulus assay responds preferentially to LPS containing short-chain 3-OHFAs. Kitchen dust contained the highest concentrations of 3-OH C(10:0), the highest endotoxin activities, and the highest specific activities (P < 0.03). Bed dust contained the largest amounts of long-chain 3-OHFAs, the highest concentrations of LPS, and the lowest specific activities. Apartments had significantly different types of LPS (P = 0.03) compared with single-family homes in study 2. These data suggest that the Limulus assay may underestimate exposure to certain types of LPS. Because nontoxic LPS may have immune modulating effects, analysis of 3-OHFAs may be useful in epidemiologic studies.

PubMed ID: 14711650 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top