Skip Navigation

Publication Detail

Title: Physiologic levels of 2-methoxyestradiol interfere with nongenomic signaling of 17beta-estradiol in human breast cancer cells.

Authors: Vijayanathan, Veena; Venkiteswaran, Sripriya; Nair, Sandhya K; Verma, Arti; Thomas, T J; Zhu, Bao Ting; Thomas, Thresia

Published In Clin Cancer Res, (2006 Apr 1)

Abstract: PURPOSE: The purpose of this investigation is to determine the effects of physiologic levels (10-50 nmol/L) of 2-methoxyestradiol (2ME) on the growth of estrogen receptor (ER)-positive breast cancer cells and provide insights into its mechanism(s) of action. EXPERIMENTAL DESIGN: Using the ERalpha-positive breast cancer cells, we studied the effects of 2ME on cell proliferation and cell signaling. Our hypothesis is that 17beta-estradiol (E(2)) and 2ME can affect shared cell signaling pathways, leading to different outcomes in cell proliferation, depending on the absence/presence of E(2). RESULTS: E(2) stimulated the growth of MCF-7 and T-47 D cells and induced Akt phosphorylation, a nongenomic signaling pathway. In the absence of E(2), 10 to 50 nmol/L of 2ME enhanced cell growth and Akt phosphorylation. However, in the presence of E(2), 2ME inhibited E(2)-induced cell growth and prevented E(2)-induced Akt phosphorylation. Confocal microscopic studies showed that 2ME inhibited subcellular distribution of ERalpha in response to E(2) in MCF-7 and T-47D cells. 2ME also down-regulated E(2)-induced increases in cyclic AMP and ornithine decarboxylase activity. In addition, treatment of MCF-7 cells with 2ME in the presence of E(2) resulted in a decrease in ERalpha level by 72 hours. Accelerated down-regulation of ERalpha may contribute to growth inhibition in the presence of E(2)/2ME combinations. In contrast, a concentration of up to 2.5 mumol/L 2ME had no effect on the growth of ER-negative SK-BR-3 cells, either in the presence or absence of E(2). CONCLUSIONS: Our results provide evidence for the nongenomic action of 2ME in ER-positive cells. In the presence of E(2), 2ME suppressed E(2)-induced cell growth, Akt signaling, and generation of cyclic AMP, whereas it acted as an estrogen in the absence of E(2). The intriguing growth-stimulatory and growth-inhibitory effects of 2ME on breast cancer cells suggests the need for its selective use in patients.

PubMed ID: 16609013 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top