Skip Navigation

Publication Detail

Title: The chemopreventive agent alpha-difluoromethylornithine blocks Ki-ras-dependent tumor formation and specific gene expression in Caco-2 cells.

Authors: Ignatenko, Natalia A; Zhang, Hui; Watts, George S; Skovan, Bethany A; Stringer, David E; Gerner, Eugene W

Published In Mol Carcinog, (2004 Apr)

Abstract: Mutation of the Kirsten-ras (Ki-ras) proto-oncogene occurs frequently in colorectal cancers. alpha-Difluoromethylornithine (DFMO), an irreversible inhibitor of the polyamine biosynthetic enzyme, ornithine decarboxylase (ODC), inhibits Ki-ras transformation and colon tumorigenesis in carcinogen-treated animal models by mechanisms yet to be elucidated. Caco-2 cells transfected with an activated Ki-ras, but not parental cells, formed tumors in severe combined immunodeficient (SCID) mice. DFMO treatment (2% in drinking water) prevented tumor growth. Gene expression profiling was performed to identify Ki-ras-and DFMO-dependent patterns of gene expression. Microarray results were validated with real-time or semi-quantitative RT-PCR and/or Western blot analysis. Genes upregulated in Caco-2 cells expressing an activated Ki-ras encoded cytoskeletal-, transport-, protease-, and gap junction-associated proteins. These genes are important for normal development and maintenance of colonic epithelial tissue. Caco-2 cells transfected with an activated Ki-ras displayed increased expression of the integrin alpha 1 (INGA1) and enhanced cell migration on laminin. These parameters were unaffected by DFMO, but Ki-ras-dependent migration was inhibited by INGA1 antibodies. Other Ki-ras-dependent, but DFMO-independent, genes included transglutaminase (TGase) and kallikrein 6 (KLK6). Ki-ras-transfected cells also expressed increased levels of connexin43 (Cx43) (RNA and protein), tight junction protein, and endothelin 1. DFMO reversed these increases. The results indicated that the Ki-ras oncogene caused changes in experimental cell migration and cell-cell communication genes and that some of these changes could be reversed by DFMO.

PubMed ID: 15057874 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top