Skip Navigation

Publication Detail

Title: Antioxidant stoichiometry and the oxidative fate of vitamin E in peroxyl radical scavenging reactions.

Authors: Liebler, D C; Burr, J A

Published In Lipids, (1995 Sep)

Abstract: Oxidation of R,R,R-alpha-tocopherol (vitamin E; TH) by peroxyl radicals generated from the azo initiator azobis(2,4-dimethylvaleronitrile) in acetonitrile, hexane, or in phospholipid liposomes yields 8a-(alkyldioxy)tocopherone adducts, 8a-(hydroxy)tocopherone, and their hydrolysis product alpha-tocopherolquinone. TH oxidation also yields 4a,5-epoxy- and 7,8-epoxy-8a-(hydroperoxy)tocopherones and their respective hydrolysis products 2,3-epoxy-alpha-tocopherolquinone and 5,6-epoxy-alpha-tocopherolquinone. Previous work indicates that the distribution of TH oxidation products varies with reaction environment. We investigated the dependence of antioxidant stoichiometry on TH oxidation product distribution for reactions in hexane, acetonitrile, and in phosphatidylcholine liposomes. Yields of 8a-substituted tocopherones were highest in hexane and lowest in phosphatidylcholine liposomes. In contrast, yields of epoxide products were highest in the liposome system and lowest in hexane. Yields of alpha-tocopherolquinone were similar in all three systems. Antioxidant stoichiometry, measured by the inhibited autoxidation method, was approximately 2.0 peroxyl radicals trapped per TH consumed in acetonitrile and in liposomes. In hexane, a slightly larger stoichiometric factor of approximately 2.5 was measured. This may, in part, reflect the generation of more reactive alkoxyl radicals in hexane. The reaction environment thus markedly affects the balance between competing TH oxidation pathways but produces comparatively little effect on antioxidant stoichiometry. These results imply that competing reaction pathways contribute similarly to the antioxidant chemistry of TH.

PubMed ID: 8577221 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top