Skip Navigation

Publication Detail

Title: Modulation of glutathione and glutamate-L-cysteine ligase by methylmercury during mouse development.

Authors: Thompson, S A; White, C C; Krejsa, C M; Eaton, D L; Kavanagh, T J

Published In Toxicol Sci, (2000 Sep)

Abstract: The antioxidant tripeptide glutathione has been proposed to be important in defense against oxidative stress and heavy metal toxicity. We evaluated alterations in glutathione regulation and synthesis associated with low-level chronic methylmercury (MeHg) exposure in the developing mouse fetus. Female C57Bl/6 mice were given 0, 3, or 10 ppm MeHg in the drinking water for 2 weeks prior to breeding and throughout pregnancy. Fetuses were collected on gestational days (gd) 12 and 16. Total glutathione, reduced glutathione (GSH), oxidized glutathione (GSSR), and glutamate-L-cysteine ligase (Glcl) activity were assessed in yolk sacs and fetuses at gd 16. Western and Northern blots for Glcl-catalytic (Glclc) and Glcl-regulatory (Glclr) subunits were performed on gd 12 and gd 16 fetuses. There were no changes in total glutathione in gd 16 mouse fetuses with exposure, but there were dose-related decreases in GSH and increases in GSSR. In contrast, visceral yolk sacs exhibited an increase in total glutathione in the low-dose groups, but no changes in the high-dose group. There were no changes in Glcl activity in fetuses, but there was a 2-fold increase in Glcl activity in yolk sacs from both low-dose and high-dose groups. There was a 2-fold induction in GLCLC: mRNA and protein in the gd 16 yolk sacs at both 3 and 10 ppm MeHg. No treatment-related changes in Glclr protein in either gd 12 or gd 16 yolk sacs or fetuses were found. Thus, the yolk sac is capable of up-regulating Glclc and GSH synthetic capacity in response to MeHg exposure. This increase appears to be sufficient to resist MeHg-induced GSH depletion in the yolk sac; however fetal glutathione redox status is compromised with exposure to 10 ppm MeHg.

PubMed ID: 10966520 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top