Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.

DISCOVERY OF NOVEL ENVIRONMENTAL CHEMICALS IN A DIVERSE POPULATION OF MATERNAL-INFANT PAIRS

Export to Word (http://www.niehs.nih.gov//portfolio/index.cfm/portfolio/grantdetail/grant_number/R01ES027051/format/word)
Principal Investigator: Woodruff, Tracey J.
Institute Receiving Award University Of California, San Francisco
Location San Francisco, CA
Grant Number R01ES027051
Funding Organization National Institute of Environmental Health Sciences
Award Funding Period 30 Sep 2016 to 31 Aug 2021
DESCRIPTION (provided by applicant): Project Summary/Abstract In utero exposure to multiple environmental chemicals has been shown to adversely impact health throughout the lifespan, leading to adverse birth outcomes, neurodevelopmental deficits, diabetes and obesity, and cancer. Yet, a key data gap limiting our ability to characterize and address developmental health risks is the lack of data on the extent to which neonates are exposed to the vast array of industrial chemicals used in the US. Over 90% of the chemicals manufactured and used in high volumes (>25,000 pounds/year) in the US are not measured in large-scale human biomonitoring studies. Further, the current biomonitoring approach requires a priori selection of compounds for which to develop and validate targeted analytical methods; the lack of data on chemical use in industrial or commercial products hinders the ability to accurately anticipate to which of the almost 8000 high use chemicals the US population is most likely exposed. To address these challenges, our project will advance an innovative, discovery-driven research project using liquid chromatography- quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) to perform a General Suspects Screen for the presence and co-occurrence of approximately 700 Environmental Organic Acids (EOAs) in a demographically diverse population of maternal-neonate pairs. We will also demonstrate how this screen can inform the selection of chemicals for targeted analysis methods development while addressing demographic disparities in EOA exposure and the extent to which maternal serum levels accurately reflect in utero exposures. We focus on EOAs because they are more easily detected by our LC-QTOF/MS and thus are a good model for our novel approach. Also, they are structurally similar to chemicals known to adversely impact development and thus are of potential health risk. Using LC-QTOF/MS, we will screen 300 matched umbilical cord and maternal serum samples, collected from a racially and economically diverse population, for ~ 700 EOAs. Using the LC- QTOF/MS results, we will identify 10 EOAs with potential for widespread human exposure and for demographic and maternal-neonatal exposure disparities. We will develop LC-MS/MS methods to confirm and quantify these 10 EOAs, and evaluate the performance of the LC-QTOF/MS screen. We will compare umbilical cord serum levels of the 10 EOAs in Hispanic versus non-Hispanic white, US– versus foreign-born, and low– versus high-income subgroups, and assess differences in exposures between maternal-fetal pairs. Our discovery-driven, suspect screen will pioneer a biomonitoring approach that prioritizes chemicals for targeted method development based on their likelihood of detection in the human population. It will also be an invaluable resource for other researchers who may query it for novel chemical exposures during the prenatal period. Finally, we will also make substantial contributions to the inventory of targeted methods for environmental chemicals and generate critical new exposure data on vulnerable and susceptible populations that is foundational to characterize and inform prevention of health risks from harmful chemicals.
Science Code(s)/Area of Science(s) Primary: 15 - Exposure Assessment/Exposome
Publications See publications associated with this Grant.
Program Officer Yuxia Cui
Back
to Top