Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.

ENVIRONMENTAL AH RECEPTOR LIGAND IMPACT ON THE HOST-MICROBIOME METABOLIC AXIS

Export to Word (http://www.niehs.nih.gov//portfolio/index.cfm/portfolio/grantdetail/grant_number/R01ES028288/format/word)
Principal Investigator: Patterson, Andrew
Institute Receiving Award Pennsylvania State University-Univ Park
Location University Park, PA
Grant Number R01ES028288
Funding Organization National Institute of Environmental Health Sciences
Award Funding Period 01 Sep 2017 to 31 Jul 2022
DESCRIPTION (provided by applicant): ABSTRACT The aryl hydrocarbon receptor (AHR) modulates the host-microbiome metabolic axis. There are strong links between the gut microbiota and the development and/or exacerbation of nonalcoholic fatty liver disease (NAFLD), all of which are modulated by activation or repression of the AHR. A mechanistic connection between AHR activation, changes in gut microbiota composition/function, and NAFLD development has not been established. Further, the concept that environmental pollutant-mediated disruption and/or modulation of the AHR-gut microbiota metabolic axis leads to the development of NAFLD has not been addressed. Our published4-7 and preliminary data with 2,3,7,8-tetrachlorodibenzofuran (TCDF) indicates AHR activation profoundly alters the gut microbiota in a qualitative and quantitative manner, increases hepatic lipogenesis, significantly alters hepatic ceramide synthesis through direct AHR activity (a proposed driver of NAFLD), and increases systemic inflammation. These results have led to the novel central hypothesis: Dietary exposure to potent environmental AHR ligands leads to functionally significant changes in the gut microbiota that exacerbate NAFLD in a time- and Ahr-dependent manner. Through the innovative use of cutting-edge techniques (16S rRNA gene sequencing, metagenomics and metabolomics) and unique mouse models (tissue specific knockouts of Ahr, gnotobiotic mice, and fecal transfer experiments), we plan to identify the functional changes imparted to the gut microbiota following dietary exposure to potent AHR ligands such as TCDF and to evaluate the AHR-dependent role of ceramides in driving NAFLD pathogenesis and progression. This combination of approaches will allow us to accurately assess bacterial community dynamics and its interaction with and impact on the host, and whether these changes result in increased susceptibility to NAFLD. We are particularly interested in how the timing (weaning, adulthood) of the exposure influences disease outcome. This study will provide new insight into the effects of exposure on a number of environmentally relevant persistent AHR ligands, such as 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) and co-planar PCBs (PCB-126) and provide valuable endpoints for future studies in human populations.
Science Code(s)/Area of Science(s) Primary: 05 - Signal Transduction
Publications See publications associated with this Grant.
Program Officer Anika Dzierlenga
Back
to Top