Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.

MECHANISMS ASSOCIATED WITH NEUROPROTECTION FROM MN-INDUCED NEUROTOXICITY.

Export to Word (http://www.niehs.nih.gov//portfolio/index.cfm/portfolio/grantdetail/grant_number/R01ES031282/format/word)
Principal Investigator: Lee, Eun Sook Yu
Institute Receiving Award Florida Agricultural And Mechanical Univ
Location Tallahassee, FL
Grant Number R01ES031282
Funding Organization National Institute of Environmental Health Sciences
Award Funding Period 10 Aug 2020 to 31 May 2025
DESCRIPTION (provided by applicant): Project Summary Chronic exposure to high levels of manganese (Mn) causes manganism, a neurological disorder which shares multiple pathological features with Parkinson's disease (PD). Mn-induced neurotoxicity includes decreased expression of tyrosine hydroxylase (TH), a rate-limiting enzyme in dopamine synthesis, and dopaminergic neuronal injury. But the mechanisms of the Mn-induced neurotoxicity are not completely understood. Estrogenic compounds, such as tamoxifen, a selective estrogen receptor modulator (SERM), have been shown to be protective in Mn toxicity and PD, but their mode of action remains to be established. While the transcription factor RE1- silencing transcription factor (REST) was initially described as a repressor of neuronal genes in non-neuronal cells during development, it has recently been shown to play a critical role in protection of adult neurons, and it activates genes that are involved in neuroprotection. Our preliminary data reveal that Mn decreased REST, whereas TX increased its expression in TH- expressing neuronal cells. REST protected dopaminergic neurons against Mn neurotoxicity by attenuating Mn-induced oxidative stress, inflammation and apoptosis. These findings indicate that REST may mediate TX-induced neuroprotection against Mn toxicity in dopaminergic neurons. Therefore, investigating the mechanisms of REST in Mn-induced neurotoxicity and TX-induced protection against Mn toxicity is critical to advance our understanding of Mn neurotoxicity and in developing therapeutic strategies to treat neurodegenerative diseases associated with dysfunction of dopaminergic neurons. We hypothesize that REST protects against Mn neurotoxicity by enhancing expression of TH, as well as the antioxidant/antiapoptotic genes catalase (CAT) and B-cell lymphoma 2 (Bcl-2), and mediates TX-induced protection against Mn toxicity via genomic ERα and nongenomic ERα/GPR30 pathways. Our hypothesis will be tested in the following specific aims: 1) Test if REST in DAergic neurons is protective against Mn neurotoxicity in mice, 2) Investigate mechanisms of Mn-induced REST reduction and the protective effects of REST against Mn neurotoxicity via upregulation of TH, CAT and Bcl-2, and 3) Test if DAergic REST is a critical mediator of TX-induced neuroprotection against Mn toxicity. The outcome of the study will provide critical information on the role of REST in DAergic neuronal function, Mn toxicity and TX-induced neuroprotection against Mn toxicity. The results also greatly contribute to the development of `neuroSERMs' to treat NDs associated with DAergic injury, such as manganism and potentially PD.
Science Code(s)/Area of Science(s) Primary: 63 - Neurodegenerative
Secondary: 03 - Carcinogenesis/Cell Transformation
Publications See publications associated with this Grant.
Program Officer Jonathan Hollander
Back
to Top