Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.

DNA ADDUCT GENOMICS

Export to Word (http://www.niehs.nih.gov//portfolio/index.cfm/portfolio/grantdetail/grant_number/R21ES028539/format/word)
Principal Investigator: Rosenquist, Thomas A
Institute Receiving Award State University New York Stony Brook
Location Stony Brook, NY
Grant Number R21ES028539
Funding Organization National Institute of Environmental Health Sciences
Award Funding Period 01 Aug 2017 to 30 Jun 2021
DESCRIPTION (provided by applicant): Numerous environmental and endogenous chemicals lead to the formation of addition products, or adducts, of DNA bases in the genome. While the cell has evolved DNA-repair pathways to remove such adducted DNA bases it is often the case that subsets of adducted bases are slowly repaired and can be detected in DNA years after the exposure that lead to their formation. Persistent DNA adducts may represent an ongoing danger to the tissues in which they are located, perhaps by causing mutations that contribute to tumor formation. Examples of exposures that lead to persistent DNA-adducts include components of tobacco smoke such as 3-nitrobenzanthrone, chemotherapeutic agents such as cisplatin, and a plant nephrotoxin and carcinogen found in many traditional Chinese medicines, aristolochic acid. The goal of this R21 proposal is to develop reagents and methods that allow for the isolation of genomic DNA fragments that contain DNA adducts and the deep sequencing of those DNAs to identify genomic regions containing such adducts. To achieve this goal, antibodies with high-specificity and affinity for the adducted base will be used to isolate DNA fragments with adducts from genomic DNA. To develop the method we will use antibodies specific for the aristolactam adduct formed after aristolochic acid exposures. A second goal is to identify the specific base that is adducted. The key to this method is to introduce a specific cleavage of the genomic DNA relative to the adducted base to allow the precise location of the adducted base in the sequenced DNA to be determined. To achieve this goal our antibodies will be fused to a DNA- endonuclease to create an adduct-specific nuclease. We will determine if the sequences that harbor repair- resistant adducts are the same that are mutated with high-frequency in tumors caused by aristolochic acid. The results of the proposed work should be the first genome-wide adductome compiled that links sequence information with adduct concentration. The specific sequences that escape the global genome repair mechanism will be of interest in the refinement of our understanding of life-long risks of environmental exposures.
Science Code(s)/Area of Science(s) Primary: 09 - Genome Integrity
Publications No publications associated with this grant
Program Officer Daniel Shaughnessy
Back
to Top