Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.


Export to Word (
Principal Investigator: Taggart, Dora M
Institute Receiving Award Microbial Insights, Inc.
Location Knoxville, TN
Grant Number R43ES030669
Funding Organization National Institute of Environmental Health Sciences
Award Funding Period 01 Apr 2019 to 31 Mar 2021
DESCRIPTION (provided by applicant): Project Summary/Abstract Metabolomics is a relatively novel Molecular Biological Tool (MBT), which employs highly sensitive instrumentation to obtain a measure of all small organic molecules present in a biological sample. Contemporary MBTs rely on quantitative PCR and measure the presence and abundance of keystone bacteria (e.g., Dehalococcoides) involved in the detoxification of priority contaminants such as chlorinated ethenes; however, the current tools fall short of informing about actual in situ dechlorination activity. Metabolomics measures small molecules that directly relate to active metabolism, and provides key insights into microbial community function and health. Chlorinated ethenes are among the most common contaminants impacting Superfund sites. Detoxification can be achieved by organohalide-respiring bacteria (e.g., Dehalococcoides) via stepwise reductive dechlorination to environmentally benign ethene; however, the degradation process often stalls at the toxic and carcinogenic intermediates cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC). MBTs applied in contemporary monitoring regimes cannot predict the occurrence of stalls, and costly remediation strategy changes are required. Laboratory experiments demonstrated that metabolomics distinguishes healthy microbiomes from “sick” microbiomes and predicts degradation stalls or when ethene formation occurs. An MBT with these capabilities would greatly reduce overall project costs and management time, streamline the implementation of the most promising remedy, contribute to early site closures, and thus be a valuable asset to the remediation industry with tangible benefits to the U.S. tax payer. The proposed study will demonstrate the value and utility of the metabolomics approach as a prognostic and diagnostic monitoring tool for the remediation industry, and develop a path towards commercialization of this MBT.
Science Code(s)/Area of Science(s) Primary: 25 - Superfund Basic Research (non- P42 center grants)
Secondary: 03 - Carcinogenesis/Cell Transformation
Publications No publications associated with this grant
Program Officer Heather Henry
to Top