Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.


Export to Word (
Principal Investigator: Jones, Dean Paul
Institute Receiving Award Emory University
Location Atlanta, GA
Grant Number U2CES030163
Funding Organization National Institute of Environmental Health Sciences
Award Funding Period 01 Sep 2018 to 30 Jun 2022
DESCRIPTION (provided by applicant): Project Summary Human evolution has created complex metabolism systems to transform and eliminate potentially harmful chemicals to which we are exposed. Available evidence indicates that these systems generate a million or more different chemical metabolites, most of which are completely uncharacterized. Widespread use of mass spectrometry-based metabolomics methods shows that many unidentified mass spectral features are significantly associated with human diseases. Substantial epidemiological research implicates environmental contributions to many disease processes, and we believe that many of the unidentified mass spectral features are metabolites of environmental chemicals. We have an established and successful human exposome research center focused on improving the understanding of environmental contributions to disease. The present proposal is to build upon this foundation to develop powerful new chemical identification tools that can be scaled to identify hundreds of thousands of foreign chemical metabolites in the human body. We have assembled an exposome research team of analytical scientists with expertise in mass spectrometry, xenobiotic metabolism, computational chemistry and robotic methods, to develop and test new chemical identification tools to identify hundreds of thousands of foreign chemical metabolites. Our approach relies upon expertise in 1) computational chemistry to predict possible xenobiotic metabolites, respective adduct forms and ion dissociation patterns in mass spectrometry, 2) use of enzymatic and cellular xenobiotic biotransformation systems, which allows creation of multi-well panels containing specific biotransformation systems to generate xenobiotic metabolites, 3) ion fragmentation mass spectrometry and NMR spectroscopy methods to confirm chemical identities and 4) expertise with robotic systems which can be used to scale the approach to identify hundreds of thousands of metabolites of environmental chemicals. An Administrative Core will maintain an organizational structure and coordinate activities between the Experimental Core and the Computational Core, NIH and the Stakeholder Engagement and Program Coordination Center (SEPCC). The Experimental Core will develop and provide compound identification capability with ultra-high-resolution mass spectrometry support. The Computational Core will develop a predicted xenobiotic metabolite database to support metabolite identification. The Administrative Core will maintain interactions with HERCULES Exposome Research Center and support interactions with prospective Core users. Milestones are established to monitor progress toward goals to establish tools for compound identification that can be scaled to identify hundreds of thousands of foreign chemical metabolites. The results will catalyze metabolomics research by providing new ways to identify unknown metabolites of environmental chemicals, and also support identification of a broader range of metabolites of drugs, food, microbiome, dietary supplements and commercial products.
Science Code(s)/Area of Science(s) Primary: 77 - Metabolomics Technology
Secondary: 03 - Carcinogenesis/Cell Transformation
Publications See publications associated with this Grant.
Program Officer David Balshaw
to Top