Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Multistage sampling for latent variable models.

Authors: Thomas, Duncan C

Published In Lifetime Data Anal, (2007 Dec)

Abstract: I consider the design of multistage sampling schemes for epidemiologic studies involving latent variable models, with surrogate measurements of the latent variables on a subset of subjects. Such models arise in various situations: when detailed exposure measurements are combined with variables that can be used to assign exposures to unmeasured subjects; when biomarkers are obtained to assess an unobserved pathophysiologic process; or when additional information is to be obtained on confounding or modifying variables. In such situations, it may be possible to stratify the subsample on data available for all subjects in the main study, such as outcomes, exposure predictors, or geographic locations. Three circumstances where analytic calculations of the optimal design are possible are considered: (i) when all variables are binary; (ii) when all are normally distributed; and (iii) when the latent variable and its measurement are normally distributed, but the outcome is binary. In each of these cases, it is often possible to considerably improve the cost efficiency of the design by appropriate selection of the sampling fractions. More complex situations arise when the data are spatially distributed: the spatial correlation can be exploited to improve exposure assignment for unmeasured locations using available measurements on neighboring locations; some approaches for informative selection of the measurement sample using location and/or exposure predictor data are considered.

PubMed ID: 17943440 Exiting the NIEHS site

MeSH Terms: Biomarkers; Case-Control Studies; Child; Epidemiologic Methods*; Humans; Models, Statistical*; Research Design*

Back
to Top