Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Rapid, efficient growth reduces mercury concentrations in stream-dwelling Atlantic salmon.

Authors: Ward, Darren M; Nislow, Keith H; Chen, Celia Y; Folt, Carol L

Published In Trans Am Fish Soc, (2010 Jan 01)

Abstract: Mercury (Hg) is a potent toxin that biomagnifies in aquatic food webs. Large fish generally have higher Hg concentrations than small fish of the same species. However, models predict that fish that grow large faster should have lower Hg concentrations than small, slow-growing fish due to somatic growth dilution (SGD). We examined the relationship between Hg concentrations and growth rate in fish using a large-scale field experiment. Atlantic salmon (Salmo salar) fry hatched under uniform initial conditions were released at eighteen sites in natural streams, collected after one growing season, and Hg concentration and growth measured. As expected for Hg accumulation from food, mercury concentrations in salmon tracked Hg concentrations in their prey. Nonetheless, large, fast-growing salmon had lower Hg concentrations than small, slow-growing salmon, consistent with SGD. While prey Hg concentration accounted for 59% of the explained variation in salmon Hg concentration across sites, salmon growth rate accounted for 38% of the explained variation independent of prey Hg concentration. A mass-balance Hg accumulation model shows that such SGD occurs when fast growth is associated with high growth efficiency. Fish growth is tremendously variable and sensitive to anthropogenic impacts, so SGD of Hg has important implications for fisheries management.

PubMed ID: 20436784 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

to Top