Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants.

Authors: Indriolo, Emily; Na, GunNam; Ellis, Danielle; Salt, David E; Banks, Jo Ann

Published In Plant Cell, (2010 Jun)

Abstract: The fern Pteris vittata tolerates and hyperaccumulates exceptionally high levels of the toxic metalloid arsenic, and this trait appears unique to the Pteridaceae. Once taken up by the root, arsenate is reduced to arsenite as it is transported to the lamina of the frond, where it is stored in cells as free arsenite. Here, we describe the isolation and characterization of two P. vittata genes, ACR3 and ACR3;1, which encode proteins similar to the ACR3 arsenite effluxer of yeast. Pv ACR3 is able to rescue the arsenic-sensitive phenotypes of yeast deficient for ACR3. ACR3 transcripts are upregulated by arsenic in sporophyte roots and gametophytes, tissues that directly contact soil, whereas ACR3;1 expression is unaffected by arsenic. Knocking down the expression of ACR3, but not ACR3;1, in the gametophyte results in an arsenite-sensitive phenotype, indicating that ACR3 plays a necessary role in arsenic tolerance in the gametophyte. We show that ACR3 localizes to the vacuolar membrane in gametophytes, indicating that it likely effluxes arsenite into the vacuole for sequestration. Whereas single-copy ACR3 genes are present in moss, lycophytes, other ferns, and gymnosperms, none are present in angiosperms. The duplication of ACR3 in P. vittata and the loss of ACR3 in angiosperms may explain arsenic tolerance in this unusual group of ferns while precluding the same trait in angiosperms.

PubMed ID: 20530755 Exiting the NIEHS site

MeSH Terms: Amino Acid Sequence; Arsenites/metabolism*; Biological Transport; Cloning, Molecular; Gene Duplication; Gene Knockdown Techniques; Genes, Plant; Germ Cells, Plant/drug effects; Germ Cells, Plant/metabolism; Membrane Transport Proteins/genetics; Membrane Transport Proteins/metabolism*; Molecular Sequence Data; Phylogeny; Plant Proteins/genetics; Plant Proteins/metabolism*; Pteris/drug effects; Pteris/genetics*; Pteris/metabolism; RNA, Plant/genetics; Sequence Alignment; Vacuoles/metabolism*

Back
to Top