Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Genetic variations in nitric oxide synthase and arginase influence exhaled nitric oxide levels in children.

Authors: Salam, M T; Bastain, T M; Rappaport, E B; Islam, T; Berhane, K; Gauderman, W J; Gilliland, F D

Published In Allergy, (2011 Mar)

Abstract: Exhaled nitric oxide (FeNO) is a biomarker of airway inflammation. In the nitric oxide (NO) synthesis pathway, nitric oxide synthases (encoded by NOS1, NOS2A, and NOS3) and arginases (encoded by ARG1 and ARG2) compete for L-arginine. Although FeNO levels are higher in children with asthma/allergy, influence of these conditions on the relationships between variations in these genes and FeNO remains unknown. The aims of the study were to evaluate the role of genetic variations in nitric oxide synthases and arginases on FeNO in children and to assess the influence of asthma and respiratory allergy on these genetic associations.Among children (6-11 years) who participated in the southern California Children's Health Study, variations in these five genetic loci were characterized by tagSNPs. FeNO was measured in two consecutive years (N = 2298 and 2515 in Years 1 and 2, respectively). Repeated measures analysis of variance was used to evaluate the associations between these genetic variants and FeNO.Sequence variations in the NOS2A and ARG2 loci were globally associated with FeNO (P = 0.0002 and 0.01, respectively). The ARG2 association was tagged by intronic variant rs3742879 with stronger association with FeNO in asthmatic children (P-interaction = 0.01). The association of a NOS2A promoter haplotype with FeNO varied significantly by rs3742879 genotypes and by asthma.Variants in the NO synthesis pathway genes jointly contribute to differences in FeNO concentrations. Some of these genetic influences were stronger in children with asthma. Further studies are required to confirm our findings.

PubMed ID: 21039601 Exiting the NIEHS site

MeSH Terms: Alleles; Arginase/genetics*; Asthma/epidemiology; Asthma/genetics; California/epidemiology; California/ethnology; Child; Child, Preschool; Female; Gene Frequency; Genetic Association Studies; Genetic Testing; Genetic Variation*; Genotype; Humans; Male; Nitric Oxide Synthase/genetics*; Nitric Oxide/metabolism*; Polymorphism, Single Nucleotide*

to Top