Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Prostanoid signaling: dual role for prostaglandin E2 in neurotoxicity.

Authors: Milatovic, Dejan; Montine, Thomas J; Aschner, Michael

Published In Neurotoxicology, (2011 Jun)

Abstract: The prostanoids, a naturally occurring subclass of eicosanoids, are lipid mediators generated through oxidative pathways from arachidonic acid. These cyclooxygenase metabolites, consisting of the prostaglandins (PG), prostacyclin and tromboxane, are released in response to a variety of physiological and pathological stimuli in almost all organs, including the brain. They are produced by various cell types and act upon targeted cells via specific G protein-coupled receptors. The existence of multiple receptors, cross-reactivity and coupling to different signal transduction pathways for each prostanoid, collectively establish their diverse effects. Notably, these effects can occur in functionally opposing directions within the same cell or organ. Prostaglandin E(2) (PGE(2)) is the most versatile prostanoid because of its receptors, E Prostanoid (EP) receptor subtypes 1 through 4, its biological heterogeneity and its differential expression on neuronal and glial cells throughout the central nervous system. Since PGE(2) plays an important role in processes associated with various neurological diseases, this review focuses on its dual neuroprotective and neurotoxic role in EP receptor subtype signaling pathways in different models of brain injury.

PubMed ID: 21376752 Exiting the NIEHS site

MeSH Terms: Animals; Brain/metabolism*; Dinoprostone/metabolism*; Humans; Models, Animal; Neurotoxicity Syndromes/metabolism*; Receptors, Prostaglandin E/metabolism*; Signal Transduction*

to Top