Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Roles of DNA polymerase I in leading and lagging-strand replication defined by a high-resolution mutation footprint of ColE1 plasmid replication.

Authors: Allen, Jennifer M; Simcha, David M; Ericson, Nolan G; Alexander, David L; Marquette, Jacob T; Van Biber, Benjamin P; Troll, Chris J; Karchin, Rachel; Bielas, Jason H; Loeb, Lawrence A; Camps, Manel

Published In Nucleic Acids Res, (2011 Sep 1)

Abstract: DNA polymerase I (pol I) processes RNA primers during lagging-strand synthesis and fills small gaps during DNA repair reactions. However, it is unclear how pol I and pol III work together during replication and repair or how extensive pol I processing of Okazaki fragments is in vivo. Here, we address these questions by analyzing pol I mutations generated through error-prone replication of ColE1 plasmids. The data were obtained by direct sequencing, allowing an accurate determination of the mutation spectrum and distribution. Pol I's mutational footprint suggests: (i) during leading-strand replication pol I is gradually replaced by pol III over at least 1.3ýýýkb; (ii) pol I processing of Okazaki fragments is limited to ýýý20ýýýnt and (iii) the size of Okazaki fragments is short (ýýý250ýýýnt). While based on ColE1 plasmid replication, our findings are likely relevant to other pol I replicative processes such as chromosomal replication and DNA repair, which differ from ColE1 replication mostly at the recruitment steps. This mutation footprinting approach should help establish the role of other prokaryotic or eukaryotic polymerases in vivo, and provides a tool to investigate how sequence topology, DNA damage, or interactions with protein partners may affect the function of individual DNA polymerases.

PubMed ID: 21622658 Exiting the NIEHS site

MeSH Terms: Base Sequence; DNA Footprinting; DNA Polymerase I/genetics; DNA Polymerase I/metabolism*; DNA Polymerase I/physiology; DNA Replication*; DNA/metabolism; Databases, Nucleic Acid; Mutation*; Plasmids/biosynthesis*; Plasmids/chemistry

to Top