Skip Navigation

Publication Detail

Title: Mono-(2-ethylhexyl) phthalate (MEHP) promotes invasion and migration of human testicular embryonal carcinoma cells.

Authors: Yao, Pei-Li; Lin, Yi-Chen; Richburg, John H

Published In Biol Reprod, (2012)

Abstract: Testicular dysgenesis syndrome refers to a collection of diseases in men, including testicular cancer, that arise as a result of abnormal testicular development. Phthalates are a class of chemicals used widely in the production of plastic products and other consumer goods. Unfortunately, phthalate exposure has been linked to reproductive dysfunction and has been shown to adversely affect normal germ cell development. In this study, we show that mono-(2-ethylhexyl) phthalate (MEHP) induces matrix metalloproteinase 2 (MMP2) expression in testicular embryonal carcinoma NT2/D1 cells but has no significant effect on MMP9 expression. NT2/D1 cells also have higher levels of MYC expression following MEHP treatment. It is widely recognized that activation of MMP2 and MYC is tightly associated with tumor metastasis and tumor progression. Gelatin zymographic analysis indicates that MEHP strongly activates MMP2 in NT2/D1 cells. Addition of the MMP2-specific inhibitor SB-3CT inhibited MEHP-enhanced cell invasion and migration, demonstrating that MMP2 plays a functional role in promoting testicular embryonal carcinoma progression in response to MEHP exposure. Furthermore, we investigated genome-wide gene expression profiles of NT2/D1 cells following MEHP exposure at 0, 3, and 24 h. Microarray analysis and semiquantitative RT-PCR revealed that MEHP exposure primarily influenced genes in cell adhesion and transcription in NT2/D1 cells. Gap junction protein-alpha 1, vinculin, and inhibitor of DNA-binding protein-1 were significantly down-regulated by MEHP treatment, while claudin-6 and beta 1-catenin expression levels were up-regulated. This study provides insight into mechanisms that may account for modulating testicular cancer progression following phthalate exposure.

PubMed ID: 22321834 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

to Top