Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Quantitative risk assessment for multivariate continuous outcomes with application to neurotoxicology: the bivariate case.

Authors: Yu, Zi-Fan; Catalano, Paul J

Published In Biometrics, (2005 Sep)

Abstract: The neurotoxic effects of chemical agents are often investigated in controlled studies on rodents, with multiple binary and continuous endpoints routinely collected. One goal is to conduct quantitative risk assessment to determine safe dose levels. Such studies face two major challenges for continuous outcomes. First, characterizing risk and defining a benchmark dose are difficult. Usually associated with an adverse binary event, risk is clearly definable in quantal settings as presence or absence of an event; finding a similar probability scale for continuous outcomes is less clear. Often, an adverse event is defined for continuous outcomes as any value below a specified cutoff level in a distribution assumed normal or log normal. Second, while continuous outcomes are traditionally analyzed separately for such studies, recent literature advocates also using multiple outcomes to assess risk. We propose a method for modeling and quantitative risk assessment for bivariate continuous outcomes that address both difficulties by extending existing percentile regression methods. The model is likelihood based; it allows separate dose-response models for each outcome while accounting for the bivariate correlation and overall characterization of risk. The approach to estimation of a benchmark dose is analogous to that for quantal data without the need to specify arbitrary cutoff values. We illustrate our methods with data from a neurotoxicity study of triethyl tin exposure in rats.

PubMed ID: 16135027 Exiting the NIEHS site

MeSH Terms: Animals; Dose-Response Relationship, Drug; Humans; Likelihood Functions; Models, Statistical*; Multivariate Analysis; Peripheral Nervous System Diseases/chemically induced*; Peripheral Nervous System/drug effects; Rats; Risk Assessment/methods*; Toxicity Tests/methods*; Triethyltin Compounds/toxicity

Back
to Top