Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Whole-transcriptome analysis delineates the human placenta gene network and its associations with fetal growth.

Authors: Deyssenroth, Maya A; Peng, Shouneng; Hao, Ke; Lambertini, Luca; Marsit, Carmen J; Chen, Jia

Published In BMC Genomics, (2017 07 10)

Abstract: The placenta is the principal organ regulating intrauterine growth and development, performing critical functions on behalf of the developing fetus. The delineation of functional networks and pathways driving placental processes has the potential to provide key insight into intrauterine perturbations that result in adverse birth as well as later life health outcomes.We generated the transcriptome-wide profile of 200 term human placenta using the Illumina HiSeq 2500 platform and characterized the functional placental gene network using weighted gene coexpression network analysis (WGCNA). We identified 17 placental coexpression network modules that were dominated by functional processes including growth, organ development, gas exchange and immune response. Five network modules, enriched for processes including cellular respiration, amino acid transport, hormone signaling, histone modifications and gene expression, were associated with birth weight; hub genes of all five modules (CREB3, DDX3X, DNAJC14, GRHL1 and C21orf91) were significantly associated with fetal growth restriction, and one hub gene (CREB3) was additionally associated with fetal overgrowth.In this largest RNA-Seq based transcriptome-wide profiling study of human term placenta conducted to date, we delineated a placental gene network with functional relevance to fetal growth using a network-based approach with superior scale reduction capacity. Our study findings not only implicate potential molecular mechanisms underlying fetal growth but also provide a reference placenta gene network to inform future studies investigating placental dysfunction as a route to future disease endpoints.

PubMed ID: 28693416 Exiting the NIEHS site

MeSH Terms: Adult; Birth Weight/genetics; Female; Fetal Development/genetics*; Gene Expression Profiling*; Gene Regulatory Networks*; Humans; Placenta/metabolism*; Pregnancy

to Top