Skip Navigation

Publication Detail

Title: Sequential anaerobic-aerobic biodegradation of emerging insensitive munitions compound 3-nitro-1,2,4-triazol-5-one (NTO).

Authors: Madeira, Camila L; Speet, Samuel A; Nieto, Cristina A; Abrell, Leif; Chorover, Jon; Sierra-Alvarez, Reyes; Field, Jim A

Published In Chemosphere, (2017 Jan)

Abstract: Insensitive munitions, such as 3-nitro-1,2,4-triazol-5-one (NTO), are being considered by the U.S. Army as replacements for conventional explosives. Environmental emissions of NTO are expected to increase as its use becomes widespread; but only a few studies have considered the remediation of NTO-contaminated sites. In this study, sequential anaerobic-aerobic biodegradation of NTO was investigated in bioreactors using soil as inoculum. Batch bioassays confirmed microbial reduction of NTO under anaerobic conditions to 3-amino-1,2,4-triazol-5-one (ATO) using pyruvate as electron-donating cosubstrate. However, ATO biodegradation was only observed after the redox condition was switched to aerobic. This study also demonstrated that the high-rate removal of NTO in contaminated water can be attained in a continuous-flow aerated bioreactor. The reactor was first fed ATO as sole energy and nitrogen source prior to NTO addition. After few days, ATO was removed in a sustained fashion by 100%. When NTO was introduced together with electron-donor (pyruvate), NTO degradation increased progressively, reaching a removal efficiency of 93.5%. Mineralization of NTO was evidenced by the partial release of inorganic nitrogen species in the effluent, and lack of ATO accumulation. A plausible hypothesis for these findings is that NTO reduction occurred in anaerobic zones of the biofilm whereas ATO was mineralized in the bulk aerobic zones of the reactor.

PubMed ID: 27750172 Exiting the NIEHS site

MeSH Terms: Aerobiosis; Anaerobiosis; Biodegradation, Environmental; Bioreactors/microbiology*; Explosive Agents/analysis*; Models, Theoretical*; Nitro Compounds/analysis*; Soil Microbiology*; Soil Pollutants/analysis*; Triazoles/analysis*

Back
to Top